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Abstract Recently, three computational algorithms for evaluating the determinant of
quasi penta-diagonal matrices have been proposed by El-Mikkawy and Rahmo (Com-
put Math Appl 59:1386–1396, 2010), by Neossi Nguetchue and Abelman (Appl Math
Comput 203:629–634, 2008), and by Jia et al. (Int J Comput Math 89:851–860, 2013),
respectively. In the current paper, two novel algorithms with less computational costs
are proposed for the determinant evaluation of general quasi penta-diagonal matrices
and quasi penta-diagonal Toeplitz matrices. Furthermore, three numerical experiments
are given to show the performance of our algorithms. All of the numerical computa-
tions were performed on a computer with aid of programs written in MATLAB.

Keywords Quasi penta-diagonal matrix · Toeplitz matrix · Triangular matrix ·
Determinant · Computational costs

1 Introduction and objectives

Penta-diagonal matrices and quasi penta-diagonal matrices frequently occur in sev-
eral mathematical chemistry [1,2] as well as scientific and engineering investigations
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[3–6]. In quantum chemistry, finite difference methods using quasi penta-diagonal
matrices are used both in the wavefunction formalism [7] and density functional the-
ory [8]. Because of their simplicity and importance in many applications, these types
of matrices have been thoroughly studied in the past decades [9–20].

In this paper, we mainly consider the n-by-n quasi penta-diagonal matrix given by

A :=
(

D F
G P

)
, (1.1)

where

D :=
(

d1 a1
b2 d2

)
,

F :=
(

c1 0 · · · 0 e1 b1
a2 c2 0 · · · 0 e2

)
∈ R

2×(n−2),

G :=
(

e3 0 · · · 0 cn−1 an

b3 e4 0 · · · 0 cn

)T

∈ R
(n−2)×2,

and P is an (n − 2)-by-(n − 2) penta-diagonal matrix takes the form

P :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d3 a3 c3

b4 d4 a4
. . .

e5 b5
. . .

. . .
. . .

. . .
. . .

. . .
. . . cn−2

. . .
. . .

. . . an−1
en bn dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.2)

In addition, as an important subclass of the quasi penta-diagonal matrices, a quasi
penta-diagonal Toeplitz matrix Ã can be obtained by setting di = d, ai = a, bi = b,

ci = c, ei = e, for i = 1, 2, . . . , n in (1.1), thus

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d a c e b
b d a c e

e b
. . .

. . .
. . .

. . .
. . .

. . .
. . . c

c
. . .

. . . d a
a c e b d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.3)

From practical point of view, usually, a fast and reliable algorithm for computing
det(A) (or det( Ã)) is linked to the problem of obtaining efficient test for the existence
of unique solution of the corresponding system. Therefore, in order to evaluate the
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determinant of the quasi penta-diagonal matrices, some researchers have derived sym-
bolic or numerical algorithms recently. For example, El-Mikkawy and Rahmo [12],
Neossi Nguetchue and Abelman [13], Jia et al. [14]. The motivation of the current
paper is to establish some more efficient algorithms for the determinant evaluation of
A (1.1) and Ã (1.3).

The rest of the present paper is organized as follows: in the next section, we present
an efficient algorithm for evaluating the determinant of the quasi penta-diagonal matrix
based on any penta-diagonal solvers. In Sect. 3, a quasi penta-diagonal Toeplitz matrix
is investigated and an approach for the evaluation of its determinant has been described.
In Sect. 4, three numerical examples are carried out for the sake of illustration, and
finally, some concluding remarks are given in Sect. 5.

2 A determinant evaluation for the quasi penta-diagonal matrix

It follows from (1.1) and two auxiliary matrices

E := (e1, e2) =
(

1 0 · · · 0 0
0 1 0 · · · 0

)T

∈ R
n×2, (2.1)

V :=
(

d1 − 1 a1 c1 0 · · · 0 e1 b1
b2 d2 − 1 a2 c2 0 · · · 0 e2

)
∈ R

2×n (2.2)

that the matrix A can be rewritten by the following form

A = Ā + EV =
(

I2 O
G P

)
+ EV, (2.3)

where I2 is an 2-by-2 identity matrix.

Theorem 2.1 (Sylvester’s determinant theorem) Let X be an m-by-n matrix, Y an
n-by-m matrix. Then

det(Im + XY ) = det(In + Y X),

where Im and In denote the m-by-m and n-by-n identity matrix respectively.

We now give a determinant evaluation for A (1.1) below.

Theorem 2.2 Let A be a quasi penta-diagonal matrix, Ā and P be matrices given in
(2.3). Let U and V be matrices of the form Ā−1 E and (2.2), respectively. Then, the
determinant of A is given by

det(A) = det(P) · det(I2 + V U ).

Proof It follows from (2.3) that the matrix A can be split by

A = Ā + EV,
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then we readily have

det(A) = det( Ā + EV ) = det( Ā) · det(In + Ā−1 EV ).

Since the matrix Ā can be factorized as

Ā = L P̃ =
(

I2 O
G In−2

) (
I2 O
O P

)
, (2.4)

where In−2 is an (n − 2)-by-(n − 2) identity matrix, it is easy to see that

det( Ā) = det(P).

On the other hand, by using Theorem 2.1, we have

det(In + Ā−1 EV ) = det(I2 + V Ā−1 E).

Thus,

det(A) = det(P) · det(I2 + V U ). ��

From the theorem above, it is necessary to compute U = [u1, u2] = Ā−1 E . With
the factorization of Ā in (2.4), the matrix U can be obtained by solving the following
linear systems:

P̃[u1, u2] = [L−1e1, L−1e2], (2.5)

where L−1 =
(

I2 O
−G In−2

)
.

In fact, by some simple matrix-vector multiplications, one may compute the right-
hand sides of the systems above immediately. Since P is a penta-diagonal matrix, the
linear systems (2.5) can be efficiently solved by any penta-diagonal solver.

Below, we state an algorithm for evaluating the determinant of the quasi penta-
diagonal matrix A (1.1).

Let us calculate the computational costs of the algorithm above. In Step 2, it takes
26n − 87 operations for obtaining u1, u2 if we use Crout LU decomposition and
forward substitution and back substitution, for details, see [21]. Furthermore, since
costs for the Step 3 and 4 are n + 27 and 1 respectively, we need 27n − 59 operations
to compute the determinant of A. We provide a comparison of the total operations
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Table 1 Total operations for the determinant of a quasi penta-diagonal matrix

Algorithm 1 [12,13] Algorithm 2 [14] Our algorithm

Total operations 36n − 102 33n + 4 27n − 59

among DETCPENTA algorithm [12], NPENTA algorithm [13], Jia et al.’s algorithm
[14] and our algorithm in the following table. Algorithm 2.1 will be referred to as the
DETQP algorithm (Table 1).

3 An approach for the quasi penta-diagonal matrix with Toeplitz structure

In this section, we first give an approach for the determinant of a penta-diagonal
Toeplitz matrix. Then, based on the proposed approach, a numerical algorithm for
evaluating the determinant of a quasi penta-diagonal Toeplitz matrix is presented.

3.1 Determinant of a penta-diagonal Toeplitz matrix

Let the penta-diagonal Toeplitz matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d a c

b d a
. . .

e b d
. . . c

. . .
. . .

. . . a
e b d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n . (3.1)

Throughout this paper, we suppose that T is nonsingular and the element c satisfies
c �= 0.

Theorem 3.1 Let T be an n-by-n penta-diagonal Toeplitz matrix. Then

det(T ) = cn−2 · det(S),

where

S =
(

emn−4 + bmn−3 + dmn−2 + amn−1 emn−5 + bmn−4 + dmn−3 + amn−2
emn−3 + bmn−2 + dmn−1 emn−4 + bmn−3 + dmn−2

)
,

and {mi }1≤i≤n−1 is the sequence defined by the recurrence relation

e

c
mi−4 + b

c
mi−3 + d

c
mi−2 + a

c
mi−1 + mi = 0, (3.2)
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for i = 5, 6, . . . , n − 1, and m1 = − a
c , m2 = − d+am1

c , m3 = − b+dm1+am2
c ,

m4 = − e+bm1+dm2+am3
c .

Proof Let X be an n-by-n lower triangular matrix of the form

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
m1 1
m2 m1 1
...

... 0
. . .

mn−2 mn−3
...

. . .
. . .

mn−1 mn−2 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Partition T as

T =
(

W Y
O Z

)
,

where W, Y, Z are matrices of size (n − 2) × 2, (n − 2) × (n − 2), 2 × (n − 2),
respectively. Then, by relation (3.2) and some simple matrices multiplications, we can
obtain

T X =
(

O Y
S Z

)
,

where

S =
(

emn−4 + bmn−3 + dmn−2 + amn−1 emn−5 + bmn−4 + dmn−3 + amn−2
emn−3 + bmn−2 + dmn−1 emn−4 + bmn−3 + dmn−2

)
.

Hence, it follows that

det(T ) = det(T X) = det(Y ) · det(S) = cn−2 · det(S),

since det(X) = 1. The result follows. ��
Remark 3.1 The complexity of the approach above are 8n +10, since it takes 7n +12
operations for obtaining det(S), and cn−2 can be computed in n − 3 operations. In
addition, for computing the determinant of a penta-diagonal Toeplitz matrix, the algo-
rithms given in [15–17,19,20] require 24n − 59, 22n − 50, 14n − 28, 11n − 17,

9n + 3 operations, respectively.

3.2 An efficient algorithm for evaluating the determinant of a quasi penta-diagonal
Toeplitz matrix

In this subsection, we study on the determinant of the quasi penta-diagonal Toeplitz
matrix Ã given in (1.3).
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Consider the following (n + 2)-by-(n + 2) lower triangular Toeplitz matrix

L̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
a c

d a
. . .

b
. . .

. . .
. . .

e
. . .

. . .
. . .

. . .

. . .
. . .

. . . a c
e b d a c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

Q1 O
T Q2

)
, (3.3)

where

Q1 =
(

c 0 0 · · · 0
a c 0 · · · 0

)
∈ R

2×n,

Q2 =
(

0 · · · 0 c a
0 · · · 0 0 c

)T

∈ R
n×2.

Let the first column of L̃−1 is (η1, η2, . . . , ηn+2)
T and ηi = 0 for i ≤ 0. Then, the

following theorem has recently been proved in [17].

Theorem 3.2 Let T be an n-by-n penta-diagonal Toeplitz matrix and L̃ be its asso-
ciated lower triangular matrix as in (3.3), (η1, η2, . . . , ηn+2)

T is the first column of
L̃−1, then T −1 = (ti, j ) exists and

ti, j = ηi (ηn+1ηn− j − ηnηn+1− j ) + ηi−1(−ηn+2ηn− j + ηn+1ηn+1− j )

ηnηn+2 − η2
n+1

+ ηi− j−1.

(3.4)

Proof See, e.g., [17]. ��
Hence, it is important to compute the elements ηi (i = 1, 2, . . . , n + 2) in the first
column of L̃−1. After solving L̃η = e1 by using the forward substitution, we can
obtain the general recurrence formula

ηi = −
i−1∑
j=1

r j−iη j , i = 2, 3, . . . , n + 2, (3.5)

where η1 = 1
c , r0 = 1, r−1 = a

c , r−2 = d
c , r−3 = b

c , r−4 = e
c and rk = 0 for

k < 0.
Let T̂ be the (n−2)-by-(n−2) leading principal submatrix of Ã (1.3). Then, matrix

Ã can be partitioned as

Ã =
(

T̂ B
C D

)
, B ∈ R

(n−2)×2, C ∈ R
2×(n−2), D ∈ R

2×2.
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From the Aitken block-diagonalization formula [22],

(
T̂ B
C D

)
=

(
In−2 O

CT̂ −1 I2

)(
T̂ O
O Ê

) (
In−2 T̂ −1 B
O I2

)
,

where Ê = D − CT̂ −1 B, we obtain

det( Ã) = det

((
In−2 O

CT̂ −1 I2

) (
T̂ O
O Ê

)(
In−2 T̂ −1 B
O I2

))

= det

(
T̂ O
O Ê

)
= det(T̂ ) · det(Ê).

Hence, by using Theorem 3.1, it yields

det( Ã) = cn−4 · det(S) · det(Ê). (3.6)

Moreover, based on the special structure of B and C , it follows that

Ê = D − (C1 C2)T̃

(
C2
C1

)
, (3.7)

where

C1 =
(

c 0
a c

)
, C2 =

(
e b
0 e

)
,

and

T̃ =

⎛
⎜⎜⎝

t1,1 t1,2 t1,n−3 t1,n−2
t2,1 t2,2 t2,n−3 t2,n−2

tn−3,1 tn−3,2 tn−3,n−3 tn−3,n−2
tn−2,1 tn−2,2 tn−2,n−3 tn−2,n−2

⎞
⎟⎟⎠ .

The elements of T̃ can be obtained by using (3.4).
In the following, we give an algorithm for evaluating the determinant of a quasi

penta-diagonal Toeplitz matrix Ã as in (1.3).
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This algorithm will be referred to as the DETQPT algorithm. In addition, the total
operations of Algorithm 3.1 are 15n + 184, since costs for the Step 2, 3, 4 and 5 are
7n − 5, 7n + 122, 64 and n + 3, respectively.

Remark 3.2 It should be mentioned that since cn−4 can be computed in O(log n)

operations, see [23], the algorithm above may give det( Ã) in 14n+O(log n)operations.

4 Numerical examples

In order to illustrate the performance of our algorithm, we give the results of three
simple numerical examples in this section. All numerical experiments were performed
in MATLAB 7.12.0.635 (R2011a).

Example 4.1 First, we compute the determinant of an 7-by-7 quasi penta-diagonal
matrix originating from [12]

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 2
1 1 1 0 0 0 1
1 1 2 1 1 0 0
0 0 1 2 1 1 0
0 0 1 1 2 1 1
1 0 0 1 1 2 2
2 1 0 0 1 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since

P =

⎛
⎜⎜⎜⎜⎝

2 1 1 0 0
1 2 1 1 0
1 1 2 1 1
0 1 1 2 2
0 0 1 2 2

⎞
⎟⎟⎟⎟⎠ , V =

(
0 1 1 0 0 1 2
1 0 1 0 0 0 1

)
.

By using Algorithm 2.1, we can compute

U =
(

1.0000 0.0000 −1.5000 1.0000 1.0000 −1.5000 0.0000
0.0000 1.0000 −1.2500 1.0000 0.5000 −1.2500 0.5000

)T

.

Thus, det(A) = det(P) · det(I2 + V U ) = 3.0000. It should be mentioned that the
determinant of matrix A given by MATLAB “det(A)” is 3.

Example 4.2 Next, we consider the following 7-by-7 quasi penta-diagonal Toeplitz
matrix
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 2 0 0 3 −2
−2 1 −1 2 0 0 3
3 −2 1 −1 2 0 0
0 3 −2 1 −1 2 0
0 0 3 −2 1 −1 2
2 0 0 3 −2 1 −1

−1 2 0 0 3 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By using Algorithm 3.1, we obtain

S =
(

3.1875 1.1250
−2.5625 2.6250

)
, Ê =

(−8.6222 5.8222
1.8222 −8.6222

)
.

Then, we can compute det(A) = 23 · det(S) · det(Ê) = 5736.0000 by using (3.6). We
also note that the determinant of matrix A given by MATLAB “det(A)” is 5736.

Example 4.3 Now, we consider an n-by-n quasi penta-diagonal matrix Toeplitz of the
form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.5 1.5 1 1 1.5
1.5 2.5 1.5 1 1
1 1.5 2.5 1.5 1

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . 1

1 1 1.5 2.5 1.5
1.5 1 1 1.5 2.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The results with DETCPENTA algorithm [12], NPENTA algorithm [13], Jia et al.’s
algorithm [14], MATLAB “det(A)” and our algorithms are shown in Table 2. We
note from Table 2 that our algorithm generated almost the same value as the others.

5 Concluding remarks

In this paper, we present a numerical algorithm for evaluating the determinant of quasi
penta-diagonal matrices. The proposed algorithm leads to a decrease in the number of

Table 2 Numerical results of the determinant for Example 4.3

n 100 1,000 10,000

Algorithm 1 [12,13] 0.05482182545302 4.70260820448565 2.56900241915417

Algorithm 2 [14] 0.05482182545302 4.70260820448583 2.56900241915659

Algorithm 2.1 0.05482182545302 4.70260820448590 2.56900241915641

Algorithm 3.1 0.05482182545301 4.70260820448583 2.56900241915659

MATLAB “det(A)” 0.05482182545302 4.70260820448588 2.56900241915650
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operations. In fact, we have shown that the total operations of our algorithm (Algorithm
2.1) is less than those of three recent algorithms given in [12–14], when the matrix
order n ≥ 5. Moreover, an efficient algorithm (Algorithm 3.1) for the determinant
evaluation of a quasi penta-diagonal Toeplitz matrix has been also derived in Sect. 3.
Finally, three numerical examples are given for the sake of illustration.
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